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Nuclear Quadrupolar Relaxation in 
Liquid Metals 
T. GASKELL 
Department of Physics, The University, Sheffield S3 7RH 

(Receiwd September 23, 1977) 

It is well known that the theory of the quadrupolar relaxation rate, R,Q,  may be expressed in 
liquids in terms of a timedependent correlation function which describes the relative motion 
of the atoms. A new, intuitive approach to the correlation problem is developed, emphasisin 
the effect of the close-range atomic encounters on the relaxation 'rate and an explicit T-IIg 
temperature dependence of the Contribution to RlQ, from such processes is demonstrated. Other 
contributions are discussed, but since the expenmental measurements of the quadrupol,ar 
relaxation rate in liquid metals indicate a close proportionality to T I ' *  it is suggested that the 
short-range collisions play the dominant role in determining the relaxation rate. 

1 INTRODUCTION 

The interaction of the nuclear quadrupole moment and the fluctuating local 
electric field gradient arising from the thermal motion ofthe surrounding ions 
provides an important mechanism for spin-lattice relaxation in liquid metals 
and alloys. An expression for the quadrupolar relaxation rate, R, , ,  in a liquid 
metal in terms of a timedependent correlation function was derived some 
years ago,' although some of the details have recently been revised.' However 
a common feature of both expressions is that they require for their evaluation 
a, time-dependent correlation function which describes the relative motion 
of the ions in the liquid. 

In a number of earlier theories it was concluded that the fluctuations in the 
electric field gradient resulted from single particle diffusion on a time scale 
which was characterized by the macroscopic selfdiffusion coefficient D. 
This description has been criticized by Warren3 on the grounds that the most 
significant contribution to the fluctuations will occur on a scale which reflects 
the motion of an ion over distances of the order of the interparticle separation. 
He derived an expression for R,, (also obtained independently by Shol14) 
which contained the dynamic structure factor S(q, o) as well as the self- 
correlation function, and argued that a major contribution to quadrupolar 

23 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



24 T. GASKELL 

relaxation comes from low frequency modes with 4 values within a quite 
narrow range around the wavenumber at which the static structure factor has 
its principal peak. 

The significant feature.of the diffusion model is the prediction that 
R , cc D- ' and that the temperature variation of R ,  is therefore determined 
by the temperature dependence of the diffusion coefficient. In view of the 
lack of information about the temperature dependence of the dynamic 
structure factor, the predicted .behaviour of R1Q from the theory of Warren 
and Sholl is more difficult to establish. Shol14 concludes that R , ,  should 
decrease with increasing T but not quite as fast as D-' dependence. Until 
more is known about the dynamic structure factor this conclusion must be 
regarded as somewhat tentative. 

Experimental data on the quadrupolar relaxation rate follows a rather 
slower temperature variation than would be predicted by a D- dependence. 
In fact the experimental evidence indicates that RIQ is closely proportional 
to T -  1'2 in a number of liquid metak5 The measurements on liquid gallium6 
and the more recent observations on liquid mercury,' amongst others, 
support this conclusion. 

The purpose of this paper is to propose a rather different means of handling 
the timedependent correlations and to examine, as far as possible, the 
consequences of this approach for the predicted temperature dependence 
of R I Q .  Now the magnitude of the electric field gradient decreases rapidly 
with increasing interatomic separation.' Because of this it seems clear that 
the rapid fluctuations in the gradients following the separation of two atoms 
after a direct collision will make a major, if not the most significant, contribu- 
tion to the quadrupolar relaxation rate. On the basis of intuitive physical 
arguments we derive an expression which describes the effect of the short 
range encounters and discuss the temperature dependence of their contribu- 
tion to R i Q .  We show that the contention that such processes dominate the 
fluctuations in the electric field gradients may be consistent with the T -  ' I 2  

dependence of the relaxation rate which is observed experimentally. Un- 
fortunately, the unknown temperature dependence of other quantities in our 
result precludes a firm prediction. 

2 TIME-DEPENDENT CORRELATIONS 

The Hamiltonian for a nuclear quadrupole moment interacting with an 
external electric field gradient may be expressed as 
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QUADRUPOLAR RELAXATION IN METALS 25 

Qm(l)  is a quantity which depends upon the quadruple moment, Q, and the 
nuclear spin operator I, and the F-, ( t )  are the electric field gradient com- 
ponents which transform as second-order spherical harmonics of index 
m. The fluctuations in the electric field components in a liquid contain 
frequencies which are much higher than the nuclear Larmor frequency wo 
and as a consequence of this the nucfear magnetization relaxes exponentially 
to thermal equilibrium with a time constant Tl which may be shown to be 
given by 

where 
m 

J(0) = J(moo) = dt exp( - jmoo t ) (  Fm(t)F - ,(O)) (2.3) I_, 
with m = 1 or 2.  The determination of RIQ,  therefore, reduces to the calcula- 
tion of the timedependent correlation functions (F,(t)F_,(O)) where the 
angular brackets denote a canonical ensemble average. 

For a liquid containing N atoms in a volume V, the electric field gradient 
at a nucleus at the point ro, due to the other ions in the liquid, may be written 
in the form 

N - 1  

~ m ( t )  = 1 um(rio(t>) (2.4) 
i =  1 

with 

where y, is the Sternheimer antishielding factor and &(riO) is the radial 
part of the electric field gradient. It may be written in terms of a function 
a<r> as 

d24 1 d 4  
$2(r) = - - -- 

dr2 r dr 

It has been pointed out by Schirmacher2 that it is not strictly correct to take 
$(r)  to be the interatomic pair-potential, as had been assumed in earlier 
 calculation^.^** He argues that the electric field gradient should be derived 
from the electric potential and not the potential energy, and he gives a 
prescription for calculating $(r)  in terms of an unscreened single-ion pseudo- 
potential and the dielectric constant. However, an important point is that 
&(r) whether evaluated from the potential, or using the prescription proposed 
by Schirmacher, decreases rapidly as r increases. 
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26 T. GASKELL 

-Now the ensemble average (F,(t)F - JO)) is conveniently separated into 
two types of term. That is, we may write 

/ N -  I \ 

The first expression on the right refers to correlations between the electric 
field gradient at the relaxing nucleus due to the same atom at two different 
times. The second between gradients at the relaxing nucleus from two 
different atoms. In the absence of any firm information about the three atom 
distribution function some form of superposition approximation is required 
even to obtain the initial value of the latter. It seems worth mentioning that 
an estimate of the magnitudes of the initial values of the two expressions can 
be important in assessing the relative importance of their contributions to 
the relaxation rate, a point which has perhaps not been emphasised sufficiently 
in the literature. 

Consider the first term in (2.6) 
N -  1 

C um(rio(t))u - m(rio(0)) 
i =  I 

N -  1 

= ( c kyum(rio(0)  + Y > u - m ( r i o ~ ( r i o ( c )  - rio(O) - Y)) (2.7) 
i =  1 

If we evaluate this expression in an approximate way by decoupling the 
ensemble average on the right hand side (2.7) becomes 

N -  I 

2: ( i =  c 1 j d y  urn(riO(0) + Y)~-.(rio(o)))(~(rio(c) - rio(O) - Y>> (2.8) 

G(y, t )  = (b(rio(t) - rio(0) - y)) is a quantity which describes the relative 
motion of the two atoms, y being the change in separation during time t. 
The principal assumption in accepting the decoupling is that the motion 
of the atoms is independent of their initial configurations. This cannot be 
correct if the atoms are in close proximity and we shall subsequently modify 
our resulting expressions for the ensemble average in an intuitive way to 
compensate for this. The average over the initial positions in the first term 
on the right hand side of (2.8) is readily expressed through the radial distribu- 
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QUADRUPOLAR RELAXATION IN METALS 27 

tion function, g(r), so that 

{:< urn(rio(t))U - rn(riO(0))) P J b r  dy g(r)u - m(r) urn(r + y)G(y, t )  (2.9) 

p being the number density. 
In order to apply this result in a physically meaningful way to describe 

the close encounters we separate the field gradient into two parts. We make 
the separation at a value of r = r, where the interatomic potential may be 
conveniently divided into a strongly repulsive core and a softer long-ranged 
component. For example, we may define r, as the value of r at which the 
interionic potential first falls to zero. When r < rc we refer to the field gradient 
as V;(r) and for r 2 rc as VL(r). We argue that those atoms whose cores are 
in contact at t = 0 will subsequently move apart under the mutual repulsion 
and we modify the latter equation to express this effect. The modification is 
such that for f > 0 the atoms will separate in a way that would be a con- 
sequence of a direct c~llision.~ Hence 

/N- 1 \ 

G(y, t )  is essentially the probability density that the change in separation 
of two atoms in time t is y. In the absence of a more satisfactory theory we 
shall approximate this by a self-correlation function but containing an 
effective mass m* = m/2, the reduced mass in the relative motion of two 
atoms.g By making use of the Gaussian approximation for the self-correlation 
function, since it has proved to give a satisfactory description in liquids, and 
under the assumption that the atoms move independently after the collision 
we replace G(y, t) by G:Cy, t) which is given by 

with 

and $(s) the normalized velocity autocorrelation function. Note that for 
small values of y and t ,  a(t) becomes (k,T/m)f2 and G:(J t) then takes its 
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28 T. GASKELL 

ideal gas form. The angular integrations involving the spherical harmonics 
are trivially carried out for the core contribution in (2.10) and the equation 
reduces to 

(2.1 1) 

If we now turn our attention to the second term in Eq. (2.6), it soon becomes 
clear that the type of argument which has been used above is not easily 
justified in this case. Close proximity of the two atoms to the relaxing nucleus 
is not the only important condition to consider. The correlation between 
the two atoms themselves is crucial and their influence on the relaxing nucleus 
cannot be considered independentIy. Since the relative motion of more than 
two atoms is involved we shall use the well known space and time dependent 
distribution function, G(r, t ) ,  introduced by van Hove. This will be incorpor- 
ated with a form of superposition approximation, which, as we suggested 
earlier is almost inevitable at the present time. The arguments are similar to 
those proposed by Warren and S h ~ l l . ) . ~  Now the three atom term in (2.6) is 
given by 

(xi,nic,, 6(r - rio(0))S(r’ - rN(t))) dr dr’ being essentially the joint prob- 
ability of finding an atom within dr at a distance r from the atom labelled 0 
at t = 0, whilst at time t a different atom will be within the volume element 
dr’ at r’ from 0. In Figure 1, y represents the migration distance of atom 0 in 
time t. 

Now the probability of finding an atom, i, within dr is pg(r)dr. Given that 
atom i is in the position shown, the probability that there will be another 
different atomj, at some later time t ,  a distance y + r’ + r away within dr’ 
and that simultaneously atom 0 will migrate a distance y will be approximately 
represented by Gd( I y + r’ - r 1, t)G,(y, t). G&, t )  refers to the distinct 
part of the van Hove correlation function, G(r, t ) ,  and is defined through the 
equation 

G(r, t )  = GAT, t )  + Gs(r, t )  (2.13) 
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QUADRUPOLAR RELAXATION IN METALS 29 

FIGURE 1 Open circles icprcscnt atomic positions at t = 0, and the hatched circles atomic 
positions at some later time 1. 

By decoupling the averages in this way we omit in the motion of the atoms 
subsequent to t = 0 the correlation in their final positions due to their mutual 
interaction and we attempt to correct this defect by multiplying the above 
result by g(rlo(t)) = g(r’). The argument may be interpreted as a form of 
time-dependent superposition approximation. The joint probability is 
obtained by integrating over all possible values of y ,  and in this way 

6(r - rio(0))G(r‘ - rjo(r)) dr dr’ 

pg(r)g(r‘) IG,,(ly + r‘ - rl, t)G,Cv, t ) d y  dr dr’ 

Hence the three atom term in (2.6) is expressed approximately as 

i.jci+n ) ( 
(2.14) 

Introducing the quantities F(k,  f) and F,(k, t )  through the equations 

Gs(r, t )  = - I d k  expOk - r)F,(k, t )  (W3 

dk exp(jk - r)F(k, t )  
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we have 

T. GASKELL 

1 
GXr, r )  = p + I d k  exp(jk * r)[F(k, t) - F,(k,  t)] ( 2 4  

When these expressions are used in (2.15) the constant density term does 
not contribute because of the independent angular integrations over the 
spherical harmonics and consequently the equation becomes 

= [Idr dr’ g(r)g(r’)UJr‘)U-,,,(r) dk exp(jk. (r - r’)) 
(2x1’ I 

The initial value of the right hand side agrees with that obtained by using 
the Born-Green-Kirkwood superposition approximation. By means of the 
standard expansion for each of the plane wave components in (2.16), namely 

where jl(kr) is a spherical Bessel’s function of order I ,  the above equation, after 
carrying out the angular integrations, may be further reduced to 

(2.17) 

where the spherical Bessel’s function is given by 

j,(x) = ~ - ~ [ ( 3  - x2)sin x - 3x cos x] 

Similar techniques may be used to handle the angular integrations involved 
in the long-ranged component in Eq. (2.1 1). 
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QUADRUPOLAR RELAXATION IN METALS 31 

Collecting the terms in (2.1 1) and (2.17) the autocorrelation function of the 
field gradient is approximately represented in the following way 

(F,, ,( t)F- ,(w = 4nw2 Jomdp rZg(rW;(r) [dy yz&;(r + Y ) G : c ~ ,  t )  

+ & /oadkbn /:dr r2g(r)42(r)j2(kr)4n J:ds s2d:’(s)i2(ks) k2F:(k, t )  1 
+ < Jmdk(4n c d r  r2g(rWz(r)i2(kr) k2[F(k ,  t )  - F,(k, t)JF,(k, t )  

( 2 4  0 

(2.18) 

the right hand side being independent of subscript m. 
In the theories of Warren and S h ~ l l ~ . ~  the two and three particle terms in 

the autocorrelation function are not considered independently. Instead a 
joint probability function is derived which contains the van Hove correlation 
function G(r. t )  in an attempt to describe both types of term in a single 
expression. If the contributions to our result in (2.18), whose time dependence 
is determined solely by the self-correlation function, cancelled exactly we 
would recover the result of Warren and Sholl. In general such a cancellation 
would be fortuitous. Our approach explicitly emphasises the influence of the 
short range collisions and it is the temperature dependence of their contribu- 
tion to R,,  with which we shall be mainly concerned. 

3 TEMPERATURE DEPENDENCE OF THE QUADRUPOLAR 
RELAXATION RATE 

We shall introduce a function R(t) ,  defined by the equation 

= V m W - m ( O ) )  

where 

3(21 + 3)(eQ)2 
412(21 - l)h2 

I =  

and from Eq. (2.2) it follows that the relaxation rate 

R 1 e = / - m m ~ ( f ~ f  

Without detailed knowledge of several quantities in the expression for the 
autocorrelation function a firm prediction of the temperature dependence of 
R1e is difficult. However, it is possible to make some comments about the 
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32 T. GASKELL 

temperature dependence arising from the close encounters expressed in the 
first term in (2.18). Because of the way in which we have defined &(r) and the 
form of the radial distribution function for r 5 rc ,  it is clear that only small 
values of y will contribute to the integral. Although the time integration of 
the modified self-correlation function, G:(y, t), is not generally known we 
may justifiably use the ideal gas form in this limit. For this situation it follows 
that 

If we denote the two and three particle contributions to R(t) by R,,,(t) and 
R(3) ( t )  respectively, then form (2.18), on carrying out the y integration we 
obtain 

(3.2) 
The second term within the bracket has only been integrated approximately, 
but the error should not be significant since we expect the first term to be 
much the more important. 

In Sholl’s (1974) paper, where &(r) was evaluated using the pair-potential, 
it was demonstrated that the characteristic features of g(r)  and &(r) where 
such that the product of the two was a sharply peaked function at a value 
of r close to the core diameter. This has yet to be confirmed when c$’(r) is 
obtained in the way suggested by Schirmacher,’ but if we speculate that this 
remains the case i t  would mean that the long-ranged component of #‘(r) 
is not very significant. The contribution of the two particle terms may then 
effectively be reduced to a single expression since the close collisions would 
dominate. It would take the form of (3.2) and could be further simplified 
in the following way. If the major contribution to the product r2g(r)#’(r) 
arises from a narrow region in r space around the atomic core diameter, rc ,  
we approximate the latter by a delta function at r = r,. We therefore intro- 
duce the equation 

where 

8’ = 3 [dr r2g(r)&2(r) 
3m 

If #(r), in the definition of (6&) given in (2.5), closely resembles the inter- 
ionic potential then the second derivative of &) will dominate the integrand 
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QUADRUPOLAR RELAXATION IN METALS 33 

so that Cij is of the order of the maximum phonon frequency in the solid. 
Hence 

There is an explicit T-'12 temperature dependence therefore in that part 
of the relaxation rate which arises from close encounters between two atoms. 
However, if the experiments which determine the temperature variation of 
the relaxation rate were carried out at constant density, it seems reasonable 
to suppose that the integrated product r2g(r)+,(r> will increase as the tempera- 
ture is increased. This is because g(r) will move inwards under these con- 
ditions where d2+/dr2 increases more rapidly, and will be particularly 
marked if Eq. (3.3) represents a good approximation. This effect may be 
nullfied to some extent by a broadening of the principal peak of g(r). Hence 
one anticipates a slower decrease than T-'',. It should be pointed out, 
however, that the experiments are not carried out along an isochore so that 
the above argument is not strictly applicable to the existing experimental 
results. 

The same type of uncertainty will be involved in assessing the contribution 
of the three particle terms in Eq. (2.18). Nevertheless we can say that because 
F(k,  t )  + F,(k, t )  for large values of k there will be no significant contribu- 
tion to R(,,(t) in this limit. In other words the effect of close collisions, which 
produce large momentum transfers, is not important here. However, 
cooperative modes of motion, involving small and intermediate range wave- 
numbers may play an important role. It is possible to reduce the expression 
if we are prepared to make certain simplifying assumptions about the time 
dependence of the functions F,(k, t )  and F(k,  t ) .  Their Fourier transforms are 
generally denoted by SJk, w )  and S(k, w )  respectively, the latter being the 
dynamic structure factor of the liquid. It has been suggested that both SXk, w )  
and S(k ,  w )  may reasonably be supposed to have Lorentzian frequency 
distributions of equal width centred at the If this is so it is easily 
shown that 

(3.5) 
If we speculate that the approximation suggested in (3.3) is valid, then this 

result simplifies to 
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34 T. GASKELL 

No convincing theory of the dynamic structure factor in the quasi-elastic 
region around S(k,  0) is available, although there are a number of approxima- 
tion which attempt to relate S(k, o) to its self part S,(k, w). A summary of the 
details has been given by Schirmacher." The Lorentzian form for S,(k, o) is 
certainly true when the time scale is such that the single particle motion is 
characterized by the macroscopic diffusion coefficient. In this case S,(k, 0) = 
(nDk2)-' and on the basis of the above approximation it would appear that 
the temperature dependence is largely determined by that of the diffusion 
coefficient. However, it is difficult to justify the use of the hydrodynamic form 
for S,(k, 0) because it appears from Warren's calculations3 that the range of 
wavenumbers which lie around the principal peak in the structure factor 
can be very important. Unlike the two particle terms therefore it will be 
difficult to determine the temperature dependence of the above equations 
without detailed numerical calculation. It should perhaps be emphasised 
again that some significant temperature dependence may arise through the 
factor in (3.6). particularly along an isochore. 

4 DISCUSSION 

We have described the effects of the short-range encounters on the quad- 
rupolar relaxation rate and for such contributions have demonstrated an 
explicit T - ' I2 dependence. An assumption that such processes dominate 
the relaxation rate would seem to be consistent with the experimentally 
observed temperature dependence for a number of liquid metals. This would 
imply that the contribution from the long-range component of the field 
gradient and that from the three particle terms are either small or show a 
marked degree of cancellation. When reliable results for the field gradient 
become available this can be properly investigated. At the present time only 
some preliminary attempts to calculate the latter have been made." 

Our result for the relaxation rate contains products of the radial part of the 
electric field gradient between two ions and the radial distribution function 
arising from the ensemble averages involved. If the characteristic features of 
these two functions are such that the major contribution arises from the 
region around the core diameter one might anticipate a significant tempera- 
ture dependent contribution to arise from such terms. This is because two 
ions will be capable of closer approach as the temperature is raised and the 
field gradient increases rapidly as the separation decreases. The effect will 
be most marked if the density remains constant, where we would predict a 
slower temperature variation than T-"'. No such experiments appear to 
have been undertaken as yet. 
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